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Abstract:  
 

Media like as social networks play a crucial role in the dissemination of knowledge, ideas, and sway among 

people. Understanding the properties of social networks, learning how information spreads via the "word-of-

mouth" impact of social networks, and learning about the social effects among individuals are the primary areas 

of study in the extant literature. Persons and communities alike. However, most studies don't account for the 

presence of destructive influences between people. To combat social ills like excessive drinking, smoking, and 

gambling, as well as influence-spreading issues like the promotion of new products, we take both positive and 

negative influences into account and propose a new optimization problem called the Minimum-sized Positive 

Influential Node Set (MPINS) selection problem to find the smallest group of nodes from which every other node 

in the network can benefit. Our help here is threefold. In the first place, we show that MPINS is APX-hard when 

seen as an independent cascade model with both positive and negative impacts. The MPINS selection issue is 

then addressed by a greedy approximation approach that we provide. Finally, we run extensive simulations and 

experiments on random graphs and seven different real-world data sets that represent small-, medium-, and 

large-scale networks to verify the efficacy of the proposed greedy algorithm. 

 

1 Introduction 
 

Like Facebook, Google+, and MySpace, social 

networks are made up of "nodes," or entities, that all 

have something in common. The social network is an 

effective means of communication for distributing 

information and gaining followers outside of one's 

immediate social circle. Since their inception, social 

networks have greatly widened our spheres of 

influence and served as a conduit between our offline 

lives and the online world. Massive attention has 

been paid to how social networks may be used 

efficiently to disseminate ideas or information within 

a community since the advent of social apps (such as 

Flickr, Wikis, Netflix, and Twitter, etc.) [1-6]. 

Understanding the positive and negative social 

impacts resulting from interactions between 

individuals and between groups is essential to solving 

The challenging challenge of capturing the dynamics 

of a social network. It's possible for members of a 

social network to have both good and negative effects 

on one another. A gaming insulator, for instance, 

would have a beneficial impact on his social circle 

and community as a whole. The favorable effect is 

compounded if a large number of a person's friends 

are also battling against the want to gamble. But a 
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person runs the risk of becoming an addicted gambler 

who harms his social circle. In Fig. 1's social 

network, for instance, edge weights indicate the 

social impacts present in the network. Jack and Bob 

(represented by the individual with the red tie) may 

be good neighbors if they prevent their friends and 

family from being addicted to gambling. To be more 

precise, Jack is 60% likely to have a favorable impact 

on Chris. Mary's negative impact on Tony is 90% 

more likely given that she is a gambler. And among 

the people shown in Fig. 1, only Tony is completely 

immune to the gambling culture. In order to reduce 

harmful social behaviors including excessive 

drinking, smoking, and gambling, this study seeks to 

identify a set of positively influential nodes (called an 

MPINS) that can reach every member of a network 

and have an effect on them of at least Among the 

many possible uses for MPINS are: Take the case of 

a town that plans to launch a smoking cessation 

initiative. The community hopes to pick a limited 

number of powerful members of the community who 

will attend a quit-smoking campaign in order to 

assure cost-effectiveness and acquire the greatest 

impact. The objective is for the chosen users to have 

a beneficial impact on the rest of the community. The 

aforementioned social issue may be mitigated and 

new items promoted in the social network if an 

MPINS is built.  

Another situation is provided as a source of 

inspiration: One tiny business's goal is to promote its 

latest merchandise in a group setting. The goal of the 

company's sample product distribution to a select 

group of customers is to minimize costs while 

maximizing earnings.  

 

Figure 1: An example of a social network with peer 

pressure along the vertices. 

The corporation is banking on the fact that these 

Users will have a pleasant experience and encourage 

others to buy the product. No less than _ of the 

people in the community should be able to have a 

lasting, positive impact on the lives of the people 

who utilize the community's services. In conclusion, 

the following narrow issue is what we look into: 

Given a social network and a threshold of _, find the 

smallest subset of its members that may have a net 

positive effect on no more than _ other members of 

the network. To ensure that every other node has at 

least half of its neighbors in D, researchers in a 

previous study [7] determined a minimum size for the 

Positive Influence Dominating Set (PIDS). In that 

study, we solely looked at the beneficial effects of 

having close neighbors and completely disregarded 

the drawbacks. The authors in Ref. [7] also looked at 

the PIDS selection problem in the context of the 

deterministic linear threshold model, where the 

weight between two nodes represents the influence 

between them, and an individual is positively 

influenced when the sum of the weights exceeds a 

given threshold. According to the authors in Ref. [7], 

the influence between any two nodes is always 

assumed to be 1, and a node is considered to be 

positively impacted if at least half of its neighbors are 

also in D. Since the strength of social influence 

between different pairs of nodes may vary and is 

actually a probabilistic value in the physical world, 

the deterministic linear threshold model is unable to 

comprehensively characterize the social influence 

between each pair of nodes in an actual social 

network[9-13]. Therefore, we investigate the MPINS 

selection problem in the context of the independent 

cascade model, where individuals can have both 

positive and negative influences on their neighbors 

with varying probabilities. 

 

2 Related Works 
 

First, we provide a quick overview of the literature 

on social influence analysis. We next provide a brief 

overview of the research around the PIDS issue and 

the challenge of maximizing one's impact, followed 

by commentary. 

 

2.1 Social influence analysis 
Kempe et al. [1] first suggested the concept of 

influence maximization, which seeks to pick a group 

of users in a social network so as to maximize the 

predicted number of a given outcome. Impacted 

people through many intermediate stages of 

knowledge dissemination [14]. Influence learning 

[10, 15], algorithm optimization [16-18], scalability 

promotion [19-21], and the impact of group 

conformity [4, 22] have all been the subject of 

empirical research. Information diffusion 

probabilities in social networks were predicted by 

Saito et al. [23] using the independent cascade model. 

After explicitly defining the likelihood maximization 

issue, they used an EM method to find the optimal 

solution. It has been stated by Tang et al. [9, 24, and 

25] that looking at social impact from various 

http://www.jbstonline.com/


Dr.J Nelson etal, JBio sci Tech, Vol 10(3),2022, 01-14 

ISSN: 0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 
 
 
 

Page | 3  
 

perspectives (subjects) may provide varying results. 

So, they came up with TAP (Topic Affinity 

Propagation) to simulate the spread of information in 

massive social networks based on shared interests. In 

order to account for the passage of time in the 

examination of shifting social impacts, Wang et al. 

[11] devised a Dynamic Factor Graph (DFG) model. 

Learning impact probabilities from past node 

activities is an issue that Goyal et al. [10] also 

investigated. 

 

2.2 Positive influence dominating set 

problem 
Under the deterministic linear threshold model, Wang 

et al. [26] first proposed the PIDS problem, which is 

to locate a set of nodes D such that each node in D is 

connected to all the other nodes in D. At least half of 

the nodes in a network's neighbors are located in D. 

A selection method was created, and its efficacy was 

evaluated using data from actual social networks. 

Subsequently, Wang et al. [7, 27] used approximation 

ratio analysis to demonstrate that PIDS is APX-hard, 

and they proposed two greedy algorithms. Using the 

term "Minimum-sized Influential Node Set" (MINS), 

he and his colleagues [28] developed a novel 

optimization issue. The purpose of this task is to find 

the smallest collection of influential nodes such that 

all other nodes may be impacted by them by at most 

some fixed threshold. However, they failed to 

account for the fact that adverse factors do exist. 

 

2.3 Influence maximization problem 
The node selection challenge in social network 

information dissemination was initially highlighted 

by Domingos and Richardson [29, 30]. Taking into 

account people' social connections, they offered a 

probabilistic information transmission model and 

many heuristic approaches to the issue. The impact 

maximization issue was subsequently articulated by 

Kempe et al. [1, 31], who went on to investigate it in 

the context of two models—the linear threshold 

model and the independent cascade model. In both 

cases, they examined the suggested greedy 

algorithms and found that their performance ratios 

were 1 1e. Leskovec et al.[32] proposed a "lazy-

forward" optimization strategy of picking beginning 

nodes, which drastically cut down on the amount of 

impact spread assessments, thereby solving the 

scalability issue of the algorithms in Ref. [1, 31]. 

Both models of #P-Hard were presented by Chen et 

al. [33, 34], along with their proposed scalable 

algorithms that are significantly faster than the 

greedy algorithms in Refs. [1, 31]. Recently, Refs 

[35-37] suggested approaches to give a holistic 

solution to the issue of influence maximization by 

taking into account data from both the cyber-physical 

environment and online social networks. 

However, the influence maximization problem was 

looked at by Goyal et al.[38] from a statistical point 

of view. Credit distribution is a novel model that 

directly uses existing propagation traces to 

understand how power is distributed in a network and 

to make predictions about that distribution. The 

authors also developed an approximation approach 

and demonstrated that the influence maximization 

issue under the credit distribution model is APX-

hard. The rapid information propagation issue was 

introduced by Zou et al.[39], who were the first to 

add the latency restriction to the influence 

maximization problem under the linear threshold 

model. Fast information propagation was also shown 

to be APX-hard in Ref. [40]. In addition, two 

heuristic methods are provided, and their relative 

performance is discussed. In contrast to prior 

research on maximizing or minimizing social impact, 

Zhang et al. [41] investigated influence coverage 

with probabilistic assurances rather than predicted 

influence coverage guarantees. In Ref. [41], the 

authors propose a novel optimization problem, 

dubbed Seed Minimization with Probabilistic 

Coverage Guarantee (SM-PCG), provide a thorough 

theoretical analysis, and provide practical findings 

that support the efficacy of the corresponding 

method. 

 

2.4 Remarks 
The aforementioned canonical works may be divided 

into three classes: the study of the features and 

qualities of social networks, including but not limited 

to social influences; investigating the lately popular 

influence maximization issue (with or without a time 

limitation) and solving the PIDS conundrum. 

However, when modeling social networks, none of 

the aforementioned works took negative influence 

into account. Our work differs from the influence 

maximization problem not only because we consider 

both positive and negative influences, but also 

because we find a subset of individuals of minimum 

size k that maximizes the expected number of 

influenced individuals while still guaranteeing 

positive influences on every node in the network with 

no less than a threshold of In addition, we have a 

unique approach to the PIDS issue that sets us apart. 

 

3 Problem Definitions and 

Hardness 
Analysis 
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 The network model is presented first in this chapter. 

The MPINS selection issue is then clearly defined, 

and some commentary is included on the suggested 

solution problem. Finally, we investigate how 

challenging the MPINS selection issue is. 

 

The Network Model, Version 3.1  

We use the undirected graph G.V; E; P.E// to 

represent a social network, where V is the collection 

of n nodes represented by ui and 06 in. i is referred to 

as ui's node ID. A line with no destination. A social 

connection between the it and jth nodes is denoted by 

ui; uj / 2 E. Where pij represents the social influence 

between nodes ui and uj _, the formula reads: P.E/ D 

fpij j if.ui; uj / 2 E; 0 pij 6 1; else pij D 0g. It's 

important to note that there are two types of social 

influence: constructive and maladaptive. For the 

smoking intervention program, for instance, a 

neighbor who decides to attend a quit-smoking 

campaign has a positive effect on all of their other 

neighbors, while smokers have a negative effect on 

theirs. Definitions 5 and 6 of Section 3.2 provide the 

formal meanings of positive and negative impact, 

respectively. For the sake of brevity, let's suppose 

that all of the linkages are undirected (bidirectional), 

meaning that any two nodes that are connected by a 

link have the same level of social influence (pij 

value). 

3.2 Identifying the Issue 

Finding an initial set of nodes in a social network that 

may favorably impact all the other nodes with a 

threshold of _ is the goal of the Maximum Possible 

impact Node Set (MPINS) selection issue. The first 

nodes that were chosen are referred to as active nodes 

for simplicity. Therefore, understanding how to 

define beneficial influence is essential for resolving 

the MPINS selection issue. We begin by formally 

defining certain terms, and then we define the 

MPINS selection issue. 

3.3 Evaluation of Problem Difficulty 

The MPINS selection issue is APX-hard in general, 

for any _. By creating an L-reduction from the Vertex 

Cover problem in a Cubic Graph (VCCG) to the 

MPINS selection problem, we show that MPINS is 

APXhard. Proof that the VCCG decision issue is 

APX-hard may be found in Ref. [42]. A cubic graph 

is a graph in which the degree of each vertex is 3. 

Finding the smallest possible vertex cover for a given 

cubic graph is the goal of VCCG.  Let's start with a 

simple example of VCCG, a cubic graph with the 

formula P.E/ D f1 j.ui ; uj / 2 EI ui ; uj 2 Vg. Here's 

how we make the new graph bG: 

 

 

The transition from G to BG G is seen in Fig. 2. 

 

4 Proof of Lemma 1 
The proof is as follows: if G has a Vertex Cover (VC) 

D of size at most d, then there exists an extra set I in 

bG which consists of: _  

 Active nodes,   

_ All the additional  

 

In the bottom shading of Fig. 2b, all the nodes vui 

stand in for the nodes ui;  

 

Therefore, we have  

  

Now, we need to check whether I satisfy 

 

  
 

For an inactive node vui 2 vui , because it connects to 
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 Active nodes  

 

 
 

Where di is the degree of a node and vui is the 

resulting graph 

 

5 Proof of Theorem 1 
 

Proof The first lemma proves right away that G has at 

least an OPTVCCG-size vertex cover. If bG has 

some minimal positive influence size, then G/. Set 

size of nodes 

 
 

Note that in a cubic graph  Hence, we 

Have 

 

 
 

On the basis of Lemma 1, plugging 

 

 
 

Into Formula (2), we have 

 

 
 

This proves that MPINS is an L-reduction of VCCG. 

To sum up, we demonstrated that a subset of the 

MPINS selection issue is APX-hard. VCCG is an 

APX-hard issue. Since this is the case, we can 

conclude that the general MPINS selection problem 

is at least APXhard. Our analysis leads us to the 

conclusion that MPINS cannot be solved in 

polynomial time, as shown by Theorem 1. Thus, in 

the following section, we propose a greedy algorithm 

to address this issue. 

 

6 Greedy Algorithms and 

Performance 

 

We present a greedy technique to address the fact that 

Analysis MPINS is APX-hard. For the planned 

MPINS-GREEDY is the name of the algorithm. We 

define a practical contribution function as follows 

before introducing MPINS-GREEDY: Function of 

contribution (.I/) (f). The contribution function of a 

collection of influential nodes I to a social network G 

represented by graph G.V; E; P.E// is defined as 

 

 
 

 

We present a two-stage heuristic approach based on 

the specified contribution function. To begin, we 

identify ui, the node with the highest f.I/. In which D 

fui g I am. After that, we use a Breadth-First-Search 

(BFS) ordering that begins with up to choose a 

Maximal Independent Set (MIS). Second, in 

Algorithm 1, the set of active nodes for MPINS-

GREEDY is initially comprised of the pre-selected 

MIS, designated by M. MPINS-GREEDY originates 

in the I DM. 

Every time, it incorporates into I the node whose f._/ 

value is highest. When f.I/ D jVj_, the algorithm 

ends. 

 

 
 

The formal definition of MIS is as follows: An 

Independent Set (IS), for a graph G D.V; E/, is a 

subset I _ V in which no two vertices v1; v2 are 

neighbors. Managing Information System The set is 

no longer an IS if we insert a single more node at 

random into it. 
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The MPINS-Greedy algorithm is shown in Fig. 3. 

 

It's simple to verify that values for u3, u5, and u7 

have been altered for the better. So, the artificial me 

is a feasible MPINS selection issue solution. In order 

to reduce convergence time, the suggested approach 

begins its search from the MIS set (M) rather than the 

empty set. The following theorem then demonstrates 

the soundness of Algorithm 1 theoretically. 

Conjecture 2 The MPINS selection issue is 

effectively solved by the first algorithm. To be more 

precise, (1) Algorithm 1 is guaranteed to end. Only if 

I is a collection of positively influencing nodes—that 

is, if every node (i.e., 8ui 2 V) is positively impacted 

by nodes in I by more than _—will the condition (2) 

hold. 

 

7 Proof of Theorem 2 
 

Proof In (1), one node is picked at random to be 

added to the final output set I based on Algorithm 1. 

Adding every node is the worst-case scenario. At the 

jVj-th repetition, into I. After that, I D V is returned 

as the final output of Algorithm 1. 

Therefore, it is guaranteed that Algorithm 1 will end. 

 

 
Followed by Definition 9. Therefore, all nodes in the 

network are positively influenced. 

 

 Then we 

obtain   

 
 

Algorithm 1 must provide a workable answer to the 

MPINS selection issue based on these two criteria. 

 

8 Performance Evaluations 
 

Considering that no other study has investigated the 

MPINS selection issue using an autonomous cascade 

model, the simulation and experimental findings of 

We evaluate MPINS-GREEDY (denoted by MPINS), 

the most closely related work [7] (denoted by PIDS), 

and the ideal solution of MPINS (denoted by ideal) 

by conducting an exhaustive search. To make sure 

that all nodes in the network are favorably impacted 

by at least the same threshold of _ in MPINS, we 

modify the termination condition of the technique 

given in Ref. [7] to discover such a PIDS. We test our 

model and algorithm on both synthetic and real-world 

data to see how well it performs. 

The Intel(R) Core(TM) 2 Quad CPU 2.83 GHz 

desktop PC with 6GB RAM was used for all 

simulations and tests. 

 

 

8.1 Simulation results 

 

8.1.1 Simulation setting 
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Based on the random graph model G.n; p/ D FG jG, 

we devised our own simulator to produce random 

graphs, each of which contains n nodes and an edge 

connecting any pair of nodes. Has a chance of pg of 

being created. The related social influence, 0 pij 6 1, 

for the graph G D.V; E/ 2 G.n; p/; ui; uj 2 V and.ui; 

uj / 2 E is produced at random. It's important to note 

that there are two types of social influence: 

constructive and maladaptive. When one node is 

chosen to be the active node, it influences its 

neighbors for the better. Otherwise, it can have 

nothing but a destructive effect on its surrounding 

areas. One hundred examples are created for each 

configuration. The outcomes are an average of these 

100 separate events. The simulation results for many 

cases are shown below. 

 

8.1.2 Simulation results on random 

graphs 
Both MPINS and PIDS aim to reduce to a minimum 

the size of the resulting subsets. Here, we verify the 

MPINS, PIDS, and PIDS solution sizes. Optimum in 

a wide variety of contexts and for nondeterministic 

graphs. The influence threshold _, the probability that 

an edge may be created in the random graph model 

G.n; p/, and the size of the network n are all variables 

in this simulation. Since we use exhaustive searching 

to locate the BEST MPINS solution, it is impossible 

to test on truly massive networks. Therefore, we 

begin by simulating smaller networks, ranging in size 

from 10 to 20 nodes. Figure 4 displays the obtained 

data. Figures 4a-c show the effects of n, p, and _ on 

the solution sizes of MPINS, PIDS, and OPTIMAL. 

All three methods provide solutions that grow in size 

as n rises, as seen in Figure 4a. This is because a 

larger network requires more effort to influence. 

Furthermore, PIDS generates a larger sized solution 

than MPINS does for a given network size. This is 

because, in each iteration, PIDS prioritizes the node 

with the greatest degree, but in MPINS, it is the node 

with the biggest f._/ value that is added after finding 

the most influential Maximal Independent Set (MIS) 

in the network. Some neighbors may have strong 

detrimental effects on the individuals in a social 

network, so a high degree is not always indicative of 

a strong ultimate influence. More nodes need to be 

added to the subset before they can exert influence 

over all the nodes in the entire network, but MPINS 

avoids the node selection bias in some specific 

regions by choosing a MIS first. The MPINS solution 

comes very near in size to the OPTIMAL outcome. 

Specifically, PIDS generates 3.75 times as many 

nodes as the OPTIMAL solution, while MPINS 

generates only 1.07 times as many. Results suggest 

that in small-scale networks, the proposed greedy 

algorithm MPINS-GREEDY may yield a solution 

that is extremely near to the OPTIMAL solution. 

 

 
 

 
 

 
Figure 4: The Relative Size of Solutions on Local 

Area Networks. n = 15, p = 0.5, and _ = 0.5 are the 

default values. 

Fig. 4b shows that there is no discernible pattern. 

Because more edges in the network means that a 

given node may have more negative or positive 

neighbors, the solution sizes of all three algorithms 

grow as p grows. Distinguishing the typical size 

distribution of sets of chosen influential nodes in a 

dense network is challenging. Since the goal of PIDS 

is not to obtain the most influential and no-

regionally-biased nodes in the network, for a given p, 

PIDS produces larger sized solutions. Once again, 

MPINS can build a solution that is as compact as the 
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optimum. While PIDS generates an average of 3:16 

more nodes than the OPTIMAL solution, MPINS 

generates an average of only 1:6 more nodes. When 

is large, more nodes must be included in the initial 

active node set in order to exert influence over all the 

other nodes, as shown in Figure 4c. This causes all 

the solutions to grow in size. 

Since PIDS's greedy criterion prioritizes nodes with 

the highest degree first, MPINS performs similarly to 

OPTIMAL and better than PIDS. In general, MPINS 

generates 1–3 times as many nodes as the OPTIMAL 

solutions, while PIDS solutions are much smaller. 

Compared to the OPTIMAL method, PIDS generates 

an average of 3–7 more nodes. The same explanation 

as previously applies. We also conduct a series of 

simulations on medium-sized networks, varying the 

network size from 100 to 1000. In Fig. 5, we can see 

how n, p, and _ affect MPINS and PIDS. Larger 

social networks need more dynamic influential nodes, 

which are shown in Figure 5a's solution sizes for 

MPINS and PIDS. In addition, the gap between 

MPINS and PIDS sizes widens with increasing n. In 

a small-scale network (i.e., n 500), the size of the 

initial active node set is small (no more than 30 from 

Fig. 5), allowing MPINS to find a positive influential 

node set that is smaller than that of PIDS at a specific 

n. As a result, it might be difficult to distinguish 

between the two approaches. However, our proposed 

MPINS significantly expands the initial active node 

set compared to PIDS in a medium-sized network, 

where n 1000. The same explanation applies to this 

case as the one we gave before. MPINS generates a 

positive influential node set that is 22.5% less in size 

than PIDS on average. Figure 5b shows that when p 

grows, both the PIDS and MPINS solution sizes 

decrease. Increasing p suggests that more edges are 

present in the 

 Network grows, it follows that the average number 

of neighbors for each node also grows. 

So, a single influential active node can affect the 

behavior of many  

 

 
 

 
 

 
 

Figure 5: Solutions' Typical Size in Very Large 

Networks the default parameters are (n = 15), (p = 

0.5), and (_ = 0.5). 

 

 Repeat PIDS for a given p. yields a bigger solution 

size than MPINS. Small solution sizes make it hard 

to tell which approach is superior. In sparse 

networks, however, such as p D 0:1, MPINS is 

demonstrably superior to PIDS. Because the degrees 

of all nodes are small when p is small, the decreasing 

trend of PIDS is very rapid when p is increased. 

Therefore, PIDS may iterate until a solution is found 

that guarantees a positive influence on every node in 

the network with a threshold of at least _. A positive 

influencing node set of modest size may be 

contributed to the solution after bigger degree nodes 

are added when p is large, which may cause PIDS to 

end sooner. Compared to MPINS, PIDS generates an 

average of 31.52% more nodes. Similarly to what 

was found for Fig. 4c, larger values of _ result in 

larger PIDS and MPINS solution sizes (as seen in 

Fig. 5c). In addition, when _ grows, PIDS produces 

more nodes than MPINS. When comparing PIDS 

with MPINS, the former generates an average of 

23.2% more nodes. The greedy searching in MPINS 

begins on a hand-picked selection of highly important 
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MIS nodes, while in PIDS, the set is initially empty. 

In addition, PIDS's greedy search criteria, node 

degree, may to locating some regionally biased nodes 

in order to expand the solution overall. Our suggested 

MPINS approach initially chooses a MIS, thus it 

never faces the aforementioned conundrum. Exhibits 

6-8  

 

 
Fig. 6 Size of the node set: The default settings are 

p = 0.5 and _ = 0.5. 

 

 
 

 
 

Fig. 7 Size of the node set: (a) n=20 and _ = 0.5; (b) 

n = 500 and _ = 0.5. 
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Comparison of network sizes in Fig. 8: (a) n = 20 

and p = 0.5; (b) n = 500 and p = 0.5. 

 

Changes in n, p, and _. Based on these findings, more 

MPINS-GREEDY iterations are likely not necessary. 

Sprint to discover an answer to MPINS after deciding 

on a powerful MIS. The suggested greedy method for 

solving PIDS, on the other hand, requires much more 

iterations than MPINS-GREEDY. 

 

8.1.3 The findings of a simulation of a 

very big network 
The growth of social media's user base has been 

meteoric. As a result, we do a number of simulations 

on very extensive systems. From 10,000 nodes, the 

network now supports 50,000. Figure 9 displays the 

effects of n, p, and _ on MPINS and PIDS. Figure 9a 

demonstrates that as n grows, so do the sizes of 

MPINS and PIDS solutions. This growth arises 

because bigger social networks need a greater 

number of dynamic influential nodes. As n grows 

larger, there becomes a larger disparity between 

MPINS and PIDS. As can be shown in Fig. 9a, our 

suggested MPINS significantly improves the size of 

the first active node set compared with PIDS in a 

large-scale network, where n D 50,000 is used as an 

example. MPINS generates a positive influential 

node set that is 42:1 smaller on average than PIDS. 

The solution sizes of PIDS and MPINS grow as _ 

grows, as shown in Fig. 9b for the same reasons 

discussed for Fig. 5. In addition, when _ grows, PIDS 

produces more nodes than MPINS. There are 4182% 

more nodes generated by PIDS than by MPINS on 

average. 

 

 

 

8.2 Experimental results on real data sets 

8.2.1 Experimental setting 
We also include trials conducted on various types of 

real-world data. The primary data sets,  

 

 
 

 
 

 
Figure 9: Node set size for (a) _ = 0.02 and (b) p = 

0.2 and (c) n = 50,000 and (p = 0.2). 

 

The source of which, as stated in Table 1, is The 

Stanford University Large Network Dataset 

Collection (SNAP) is a repository for publicly 

available network datasets. Linked system  
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Table 1 Data set 1 in our experiment. 

 
 

Summaries of statistics include the number of nodes 

and edges, the size of the largest weakly connected 

component (LWCC), and the number of nodes and 

edges in the smallest strongly connected component.  

The number of edges, and the diameter (i.e., the 

longest and shortest route) of the LSCC. The 

information in Table 1 was compiled using the 

Amazon.com tool "Customers Who Bought This 

Item Also Bought." Information gathered in the 

Amazon from March to May of 2003 was used to 

construct four distinct networks. If product i am 

commonly bought alongside product j, then there will 

be an edge between the two goods in the network 

[43]. We also test our system on the following real-

world datasets, in addition to the Amazon product co-

purchasing datasets provided in Table 1: 

One such dataset is Wiki Vote, which can be found in 

Ref. [44] and provides information on past votes on 

Wikipedia. Voting information for Wikipedia from 

its beginning in 2001 to January 2008 is included in a 

data collection with 7115 vertices and 103 689 edges. 

There will be a connection between users i and j if i 

voted for j in the administrative election. For (2) 

Coauthor, see Ref. [45], which provides access to the 

data collection containing the coauthors' information 

as kept by ArnetMiner__.The set we settled on has 

exactly 53 442 vertices and exactly 127 968 edges. If 

author i is connected to author j, then there will be 

one edge between them.  

Figure 10 displays the average degree of each data 

set, which may be used to get insight into the data 

features of the real-world datasets. Figure 11 

provides a concise overview of the social impact 

distribution between every pair of nodes in the 

datasets. Figure 11a demonstrates that the majority of 

the vertices are influenced socially during the 

interval. Time stamps of 0:005; 0:05 in the Amazon 

A1-A4 co-purchase datasets. Based on this finding, 

we allowed _ to vary in the experiment data sets 

including Amazon co-purchases from 0:005 to 0:02. 

Most social impacts around the boundaries lie inside 

the range, as shown in Figure 11b.Data sets from 

Wiki Vote (0:02), Coauthor (0:10), and Twitter 

(0:10). In the same way, we varied _ in the 

experiments from 0:02 to 0:08 for these three 

datasets. 

 

8.2.2 Experimental results 
The effects of changing from 0:005 to 0:02 on 

Amazon co purchase data set _ sizes, MPINS 

solutions, and PIDS solutions in Fig. 12a for your 

perusal. Because more influential nodes must be 

chosen when the pre-set threshold is high, the size of 

the PIDS and MINS solutions grows as _ increases, 

as shown in Fig. 12a. MPINS generates more 

compact sets of influential nodes than PIDS does for 

a given _. MPINS's solution size is also somewhat 

similar to that of MIS. Those findings line up with 

 
 

Fig. 10 Average degree of each real-world data sets. 
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FIGURE 11: The distribution of possible outcomes 

for the Wiki Vote, Coauthor, and Twitter datasets, 

as well as the Amazon co-purchase dataset (a). 

 

The outcomes of the simulation. Our recommended 

 analysis of data set A2 MPINS is a much superior 

technique than PIDS. When compared to PIDS, 

MPINS chooses nodes with 31% less influence on 

average. The ratio of PIDS to MPINS solution size is 

around 37:23. 

Because MPINS prioritizes the node with the most 

influence, rather than the node with the largest 

degree, this outcome occurs. In addition, PIDS has a 

faster rate of solution size expansion than MPINS. In 

particular, the typical rates of increase for PIDS and 

MPINS solution sizes are 62 and 38%, respectively. 

Once again, the findings demonstrate that more 

degree does not equal greater sway in a social 

network. Changes in _ from 0:02 to 0:08 have similar 

effects on the MIS size, MPINS solutions, and PIDS 

solution on the WikiVote, Coauthor, and Twitter data 

sets, as shown in Fig. 12b. Sizes of PIDS and MINS 

solutions grow as _ grows, as seen in Fig. 12b. 

MPINS generates a smaller number of influence 

nodes than does  

 

 
 

 
 

Datasets for (a) Amazon copurchases and (b) 

WikiVotes, Coauthorship, and Twitter are combined 

in Figure 12 to illustrate the overall number of 

significant nodes in each. PIDS. The MPINS solution 

is also around the same size as the MIS. When 

applied to the Twitter dataset, MPINS picks 45–45% 

less influential nodes than PIDS. The mean absolute 

difference between PIDS and MPINS results is 36.37 

percentage points. Further, PIDS's rate of solution 

size expansion is higher than that of MPINS. In 

instance, the average increase rate of the size of the 

solution is 54:1% for PIDS and 43:6% for MPINS. 

Figure 13 displays the percentage of the network's 

nodes that play a significant role. Figure 13a shows 

the results of _ for the Amazon co-purchase data sets 

on the ratio of MIS, MPINS, and PIDS, while Figure 

13b shows the results of _ for the WikiVote, 

Coauthor, and Twitter data sets. 

The consequences of the past don't repeat themselves. 

Nonetheless, a single idea stands out:  
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Figure 13: In (a) Amazon co-purchase data sets and 

(b) WikiVote, Coauthor, and Twitter data sets, the 

percentage of the total size of prominent node sets. 

That compared to WikiVote, Coauthor, and Twitter 

data sets, Amazon co-purchase data sets have a 

significantly smaller number of nodes identified as 

influential nodes. To be more precise, PIDS and 

MPINS choose nodes with influence scores of 0.047 

and 0.035, respectively, under the worst case scenario 

(for the data set A1 with _ D = 0.02). Both PIDS and 

MPINS select 11.2 percent of nodes as influential for 

the Wiki Vote dataset with _ D = 0.08. Compared to 

the WikiVote, Coauthor, and Twitter data sets, the 

Amazon copurchase data sets seem to be more 

conducive to the spread of social impacts. Users' past 

Amazon purchases are used to make comparable 

product recommendations, which speeds up the 

influence spread. 

Finally, we evaluate MPINS against PIDS and a 

"Random" technique that selects a node at random to 

serve as the influential node. Figure 14 displays the 

effects of _ on the solution sizes of MPINS, PIDS, 

and Random when _ varies from 0:02 to 0:08 for the 

WikiVote, Coauthor, and Twitter datasets. Figure 14 

illustrates how the sizes of Random, PIDS, and 

MPINS solutions grow with n. In addition, MPINS 

yields a less significant effect for a given _. 

 

 
 

 
 

 
 

Figure 14: Comparison of MPINS, PIDS, and 

Random in (a) WikiVote, (b) Coauthor, and (c) 

Twitter. 

 

cluster than PIDS does. This finding accords with 

findings from past experiments and results from 

simulations. For a given _, Random selects a node at 

random without any selection criteria, whereas PIDS 

and MPINS generate significantly narrower 
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collections of influential nodes. In contrast to our 

MPINS' greedy criteria, PIDS's selection method is 

degree-based, while it is influence-based. Both PIDS 

and MPINS seem like they ought to do better than 

Random, at least intuitively. On average, MPINS 

chooses 48.33% fewer important nodes than PIDS for 

theWikiVote dataset (shown in Fig. 14a). When 

compared to Random, MPINS chooses nodes with 

61% fewer influence 69% of the time. Compared to 

PIDS, MPINS picks, on average, 15-32% less 

important nodes from the Coauthor data set (shown 

in Fig. 14b). On average, MPINS chooses 13–77% 

less influential nodes than Random. Compared to 

PIDS, MPINS picks, on average, 23.121% less 

important nodes from the Twitter data set (Fig. 14c). 

When compared to Random, MPINS chooses nodes 

with 66% fewer influence on average. 

 

9 Conclusions 
 

This research investigates the commercially-relevant 

MPINS selection issue in social networks. By use of 

simplification, we prove that MPINS according to the 

independent cascade model is challenging for APX. 

As a result, we propose a greedy algorithm, 

MPINSGREEDY, to address the issue. We test our 

proposed technique on seven distinct real-world 

datasets and verify it through simulations on random 

networks. Evidence from simulation and testing 

suggests that MPINS-GREEDY can build satisfied 

initial active node sets that are smaller than the most 

recent related study, PIDS. Furthermore, MPINS-

GREEDY performs similarly to the optimal MPINS 

solution for small-scale networks. In addition, 

MPINSGREEDY significantly outperforms PIDS in 

sparse networks, large-scale networks, and with a 

high threshold. 
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