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Abstract:

Media like as social networks play a crucial role in the dissemination of knowledge, ideas, and sway among
people. Understanding the properties of social networks, learning how information spreads via the "word-of-
mouth' impact of social networks, and learning about the social effects among individuals are the primary areas
of study in the extant literature. Persons and communities alike. However, most studies don't account for the
presence of destructive influences between people. To combat social ills like excessive drinking, smoking, and
gambling, as well as influence-spreading issues like the promotion of new products, we take both positive and
negative influences into account and propose a new optimization problem called the Minimum-sized Positive
Influential Node Set (MPINS) selection problem to find the smallest group of nodes from which every other node
in the network can benefit. Our help here is threefold. In the first place, we show that MPINS is APX-hard when
seen as an independent cascade model with both positive and negative impacts. The MPINS selection issue is
then addressed by a greedy approximation approach that we provide. Finally, we run extensive simulations and
experiments on random graphs and seven different real-world data sets that represent small-, medium-, and
large-scale networks to verify the efficacy of the proposed greedy algorithm.

1 Introduction

Like Facebook, Googlet, and MySpace, social Flickr, Wikis, Netflix, and Twitter, etc.) [1-6].

networks are made up of "nodes," or entities, that all
have something in common. The social network is an
effective means of communication for distributing
information and gaining followers outside of one's
immediate social circle. Since their inception, social
networks have greatly widened our spheres of
influence and served as a conduit between our offline
lives and the online world. Massive attention has
been paid to how social networks may be used
efficiently to disseminate ideas or information within
a community since the advent of social apps (such as

Understanding the positive and negative social
impacts resulting from interactions between
individuals and between groups is essential to solving
The challenging challenge of capturing the dynamics
of a social network. It's possible for members of a
social network to have both good and negative effects
on one another. A gaming insulator, for instance,
would have a beneficial impact on his social circle
and community as a whole. The favorable effect is
compounded if a large number of a person's friends
are also battling against the want to gamble. But a
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person runs the risk of becoming an addicted gambler
who harms his social circle. In Fig. 1's social
network, for instance, edge weights indicate the
social impacts present in the network. Jack and Bob
(represented by the individual with the red tie) may
be good neighbors if they prevent their friends and
family from being addicted to gambling. To be more
precise, Jack is 60% likely to have a favorable impact
on Chris. Mary's negative impact on Tony is 90%
more likely given that she is a gambler. And among
the people shown in Fig. 1, only Tony is completely
immune to the gambling culture. In order to reduce
harmful social behaviors including excessive
drinking, smoking, and gambling, this study seeks to
identify a set of positively influential nodes (called an
MPINS) that can reach every member of a network
and have an effect on them of at least Among the
many possible uses for MPINS are: Take the case of
a town that plans to launch a smoking cessation
initiative. The community hopes to pick a limited
number of powerful members of the community who
will attend a quit-smoking campaign in order to
assure cost-effectiveness and acquire the greatest
impact. The objective is for the chosen users to have
a beneficial impact on the rest of the community. The
aforementioned social issue may be mitigated and
new items promoted in the social network if an
MPINS is built.

Another situation is provided as a source of
inspiration: One tiny business's goal is to promote its
latest merchandise in a group setting. The goal of the
company's sample product distribution to a select
group of customers is to minimize costs while
maximizing earnings.

Figure 1: An example of a social network with peer
pressure along the vertices.
The corporation is banking on the fact that these
Users will have a pleasant experience and encourage
others to buy the product. No less than _ of the
people in the community should be able to have a
lasting, positive impact on the lives of the people
who utilize the community's services. In conclusion,
the following narrow issue is what we look into:
Given a social network and a threshold of , find the
smallest subset of its members that may have a net
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positive effect on no more than _ other members of
the network. To ensure that every other node has at
least half of its neighbors in D, researchers in a
previous study [7] determined a minimum size for the
Positive Influence Dominating Set (PIDS). In that
study, we solely looked at the beneficial effects of
having close neighbors and completely disregarded
the drawbacks. The authors in Ref. [7] also looked at
the PIDS selection problem in the context of the
deterministic linear threshold model, where the
weight between two nodes represents the influence
between them, and an individual is positively
influenced when the sum of the weights exceeds a
given threshold. According to the authors in Ref. [7],
the influence between any two nodes is always
assumed to be 1, and a node is considered to be
positively impacted if at least half of its neighbors are
also in D. Since the strength of social influence
between different pairs of nodes may vary and is
actually a probabilistic value in the physical world,
the deterministic linear threshold model is unable to
comprehensively characterize the social influence
between each pair of nodes in an actual social
network[9-13]. Therefore, we investigate the MPINS
selection problem in the context of the independent
cascade model, where individuals can have both
positive and negative influences on their neighbors
with varying probabilities.

2 Related Works

First, we provide a quick overview of the literature
on social influence analysis. We next provide a brief
overview of the research around the PIDS issue and
the challenge of maximizing one's impact, followed
by commentary.

2.1 Social influence analysis

Kempe et al. [1] first suggested the concept of
influence maximization, which seeks to pick a group
of users in a social network so as to maximize the
predicted number of a given outcome. Impacted
people through many intermediate stages of
knowledge dissemination [14]. Influence learning
[10, 15], algorithm optimization [16-18], scalability
promotion [19-21], and the impact of group
conformity [4, 22] have all been the subject of
empirical research. Information diffusion
probabilities in social networks were predicted by
Saito et al. [23] using the independent cascade model.
After explicitly defining the likelihood maximization
issue, they used an EM method to find the optimal
solution. It has been stated by Tang et al. [9, 24, and
25] that looking at social impact from various
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perspectives (subjects) may provide varying results.
So, they came up with TAP (Topic Affinity
Propagation) to simulate the spread of information in
massive social networks based on shared interests. In
order to account for the passage of time in the
examination of shifting social impacts, Wang et al.
[11] devised a Dynamic Factor Graph (DFG) model.
Learning impact probabilities from past node
activities is an issue that Goyal et al. [10] also
investigated.

2.2 Positive influence dominating set

problem

Under the deterministic linear threshold model, Wang
et al. [26] first proposed the PIDS problem, which is
to locate a set of nodes D such that each node in D is
connected to all the other nodes in D. At least half of
the nodes in a network's neighbors are located in D.
A selection method was created, and its efficacy was
evaluated using data from actual social networks.
Subsequently, Wang et al. [7, 27] used approximation
ratio analysis to demonstrate that PIDS is APX-hard,
and they proposed two greedy algorithms. Using the
term "Minimum-sized Influential Node Set" (MINS),
he and his colleagues [28] developed a novel
optimization issue. The purpose of this task is to find
the smallest collection of influential nodes such that
all other nodes may be impacted by them by at most
some fixed threshold. However, they failed to
account for the fact that adverse factors do exist.

2.3 Influence maximization problem

The node selection challenge in social network
information dissemination was initially highlighted
by Domingos and Richardson [29, 30]. Taking into
account people' social connections, they offered a
probabilistic information transmission model and
many heuristic approaches to the issue. The impact
maximization issue was subsequently articulated by
Kempe et al. [1, 31], who went on to investigate it in
the context of two models—the linear threshold
model and the independent cascade model. In both
cases, they examined the suggested greedy
algorithms and found that their performance ratios
were 1 le. Leskovec et al.[32] proposed a "lazy-
forward" optimization strategy of picking beginning
nodes, which drastically cut down on the amount of
impact spread assessments, thereby solving the
scalability issue of the algorithms in Ref. [1, 31].
Both models of #P-Hard were presented by Chen et
al. [33, 34], along with their proposed scalable
algorithms that are significantly faster than the
greedy algorithms in Refs. [1, 31]. Recently, Refs
[35-37] suggested approaches to give a holistic
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solution to the issue of influence maximization by
taking into account data from both the cyber-physical
environment and online social networks.

However, the influence maximization problem was
looked at by Goyal et al.[38] from a statistical point
of view. Credit distribution is a novel model that
directly uses existing propagation traces to
understand how power is distributed in a network and
to make predictions about that distribution. The
authors also developed an approximation approach
and demonstrated that the influence maximization
issue under the credit distribution model is APX-
hard. The rapid information propagation issuc was
introduced by Zou et al.[39], who were the first to
add the latency restriction to the influence
maximization problem under the linear threshold
model. Fast information propagation was also shown
to be APX-hard in Ref. [40]. In addition, two
heuristic methods are provided, and their relative
performance is discussed. In contrast to prior
research on maximizing or minimizing social impact,
Zhang et al. [41] investigated influence coverage
with probabilistic assurances rather than predicted
influence coverage guarantees. In Ref. [41], the
authors propose a novel optimization problem,
dubbed Seed Minimization with Probabilistic
Coverage Guarantee (SM-PCG), provide a thorough
theoretical analysis, and provide practical findings
that support the efficacy of the corresponding
method.

2.4 Remarks

The aforementioned canonical works may be divided
into three classes: the study of the features and
qualities of social networks, including but not limited
to social influences; investigating the lately popular
influence maximization issue (with or without a time
limitation) and solving the PIDS conundrum.
However, when modeling social networks, none of
the aforementioned works took negative influence
into account. Our work differs from the influence
maximization problem not only because we consider
both positive and negative influences, but also
because we find a subset of individuals of minimum
size k that maximizes the expected number of
influenced individuals while still guaranteeing
positive influences on every node in the network with
no less than a threshold of In addition, we have a
unique approach to the PIDS issue that sets us apart.

3 Problem
Hardness
Analysis

Definitions and
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The network model is presented first in this chapter.
The MPINS selection issue is then clearly defined,
and some commentary is included on the suggested
solution problem. Finally, we investigate how
challenging the MPINS selection issue is.

The Network Model, Version 3.1

We use the undirected graph G.V; E; P.E/ to
represent a social network, where V is the collection
of n nodes represented by ui and 06 in. i is referred to
as ui's node ID. A line with no destination. A social
connection between the it and jth nodes is denoted by
ui; uj / 2 E. Where pij represents the social influence
between nodes ui and uj _, the formula reads: P.E/ D
fpij j ifui; uj / 2 E; 0 pij 6 1; else pij D Og. It's
important to note that there are two types of social
influence: constructive and maladaptive. For the
smoking intervention program, for instance, a
neighbor who decides to attend a quit-smoking
campaign has a positive effect on all of their other
neighbors, while smokers have a negative effect on
theirs. Definitions 5 and 6 of Section 3.2 provide the
formal meanings of positive and negative impact,
respectively. For the sake of brevity, let's suppose
that all of the linkages are undirected (bidirectional),
meaning that any two nodes that are connected by a
link have the same level of social influence (pij
value).

3.2 Identifying the Issue

Finding an initial set of nodes in a social network that
may favorably impact all the other nodes with a
threshold of _ is the goal of the Maximum Possible
impact Node Set (MPINS) selection issue. The first
nodes that were chosen are referred to as active nodes
for simplicity. Therefore, understanding how to
define beneficial influence is essential for resolving
the MPINS selection issue. We begin by formally
defining certain terms, and then we define the
MPINS selection issue.

3.3 Evaluation of Problem Difficulty

The MPINS selection issue is APX-hard in general,
for any . By creating an L-reduction from the Vertex
Cover problem in a Cubic Graph (VCCG) to the
MPINS selection problem, we show that MPINS is
APXhard. Proof that the VCCG decision issue is
APX-hard may be found in Ref. [42]. A cubic graph
is a graph in which the degree of each vertex is 3.
Finding the smallest possible vertex cover for a given
cubic graph is the goal of VCCG. Let's start with a
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simple example of VCCG, a cubic graph with the
formula P.E/ D fl j.ui ; uj/ 2 El ui ; uj 2 Vg. Here's
how we make the new graph bG:

The transition from G to BG G is seen in Fig. 2.

4 Proof of Lemma 1

The proof'is as follows: if G has a Vertex Cover (VC)
D of size at most d, then there exists an extra set I in
bG which consists of:

ViTog,_p((1 — P™ — 61 Active nodes, Uz

Al the additional !Megi—p(l— P —6)1-1.
Ui

In the bottom shading of Fig. 2b, all the nodes vui
stand in for the nodes ui;

VvCDinG.ie. {ty, |u; € DinG}.

Therefore, we have 1= VIlogi—p((1— V-

8)1 + €1 (Nog,_, 61— 1) +d < k.
Now, we need to check whether I satisfy

vip € G,0" () =  pu, (AT () — po, (W E (1)) 2 6.
For an inactive node vui 2 vui , because it connects to
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[log,_,((1 — p) - 91 Active nodes

v = {vi 11<j < Nlog,_, (1 - p)™ = )1}, we
have g% (vy,) = pu, (A (vyy) — po,, W uy,) =
[] _ [’l — P}L‘:‘!I—p[{l'PJIH_ﬂ}] — ||. - “ - .n'.:'dl] ;
il_p}d‘-_fl—pj‘: +5';9:

Where di is the degree of a node and vui is the
resulting graph

5 Proof of Theorem 1

Proof The first lemma proves right away that G has at
least an OPTVCCG-size vertex cover. If bG has
some minimal positive influence size, then G/. Set
size of nodes

OPTypins(G) = [VIMlog, (1 — p)'™ — @)1+

IE“ []clg,_ﬂil—ﬂ—Hﬂ—]F+EJI-"T-H_-(_-.;;[Q] (1}

G. €] = ik}
Note that in a cubic graph - 2 Hence, we
Have
vIE i i
5 = 3 = OFTveealy) (2)

On the basis of Lemma 1, plugging

V] = OP Tuems (G- OF Ty ()
 agy— plil— ) V1—8)1+ F ([lag)_ p(1— p—B}—1)
(3)

Into Formula (2), we have

OPTypis(G) < [2Mlog,_, (1 — p)Y1 = 8)1+
1
3log,_p(1—p—0)]— ;]UPT'-;EC('.{g} (4)

This proves that MPINS is an L-reduction of VCCG.
To sum up, we demonstrated that a subset of the
MPINS selection issue is APX-hard. VCCG is an
APX-hard issue. Since this is the case, we can
conclude that the general MPINS selection problem
is at least APXhard. Our analysis leads us to the
conclusion that MPINS cannot be solved in
polynomial time, as shown by Theorem 1. Thus, in
the following section, we propose a greedy algorithm
to address this issue.

6 Greedy
Performance

Algorithms and
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We present a greedy technique to address the fact that
Analysis MPINS is APX-hard. For the planned
MPINS-GREEDY is the name of the algorithm. We
define a practical contribution function as follows
before introducing MPINS-GREEDY: Function of
contribution (.I/) (f). The contribution function of a
collection of influential nodes I to a social network G
represented by graph G.V; E; P.E// is defined as

WV
f(I) =% max{min(g(u;),#),0}.

i=1

We present a two-stage heuristic approach based on
the specified contribution function. To begin, we
identify ui, the node with the highest f.I/. In which D
fui g I am. After that, we use a Breadth-First-Search
(BFS) ordering that begins with up to choose a
Maximal Independent Set (MIS). Second, in
Algorithm 1, the set of active nodes for MPINS-
GREEDY is initially comprised of the pre-selected
MIS, designated by M. MPINS-GREEDY originates
in the I DM.

Every time, it incorporates into I the node whose f. /
value is highest. When fI/ D jVj , the algorithm
ends.

Algorithm 1 MPINS-GREEDY Algorithm
Require: A social network represented by graph G(V, £, P(£));
a pre-defined threshold 4.
1. Initialize T = M
z while f(I) < |V|f do
3 choose w € V\ T to maximize f(T [ {u})
£ I=T1|J)
5 end while
6 return

The formal definition of MIS is as follows: An
Independent Set (IS), for a graph G D.V; E/, is a
subset I _ V in which no two vertices vl; v2 are
neighbors. Managing Information System The set is
no longer an IS if we insert a single more node at
random into it.
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i s

BF5 Ordening: {HL_ Ly M3 Uy M5 Mg H?}
MIS: {“I._ [4!5}'

fi .8 ® Active user

i<l

The MPINS-Greedy algorithm is shown in Fig. 3.

It's simple to verify that values for u3, u5, and u7
have been altered for the better. So, the artificial me
is a feasible MPINS selection issue solution. In order
to reduce convergence time, the suggested approach
begins its search from the MIS set (M) rather than the
empty set. The following theorem then demonstrates
the soundness of Algorithm 1 theoretically.
Conjecture 2 The MPINS selection issue is
effectively solved by the first algorithm. To be more
precise, (1) Algorithm 1 is guaranteed to end. Only if
I is a collection of positively influencing nodes—that
is, if every node (i.e., 8ui 2 V) is positively impacted
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by nodes in I by more than —will the condition (2)
hold.

7 Proof of Theorem 2

Proof In (1), one node is picked at random to be
added to the final output set I based on Algorithm 1.
Adding every node is the worst-case scenario. At the
jVj-th repetition, into I. After that, I D V is returned
as the final output of Algorithm 1.

Therefore, it is guaranteed that Algorithm 1 will end.

For (2), = f f(Z) = [VIA, then Vs € V. 0% (u;)

o

Followed by Definition 9. Therefore, all nodes in the
network are positively influenced.

=: if‘v’u; € V’.Q;T'[H,.-} =0, Then
Yu; € V.min(gT(u;).0) = 6.

we

obtain

V
f(I) = ZI]lu:-;{l]lil]{ﬂr(th'}l.9].1]} = |V|®.

i=1

Algorithm 1 must provide a workable answer to the
MPINS selection issue based on these two criteria.

8 Performance Evaluations

Considering that no other study has investigated the
MPINS selection issue using an autonomous cascade
model, the simulation and experimental findings of
We evaluate MPINS-GREEDY (denoted by MPINS),
the most closely related work [7] (denoted by PIDS),
and the ideal solution of MPINS (denoted by ideal)
by conducting an exhaustive search. To make sure
that all nodes in the network are favorably impacted
by at least the same threshold of _ in MPINS, we
modify the termination condition of the technique
given in Ref. [7] to discover such a PIDS. We test our
model and algorithm on both synthetic and real-world
data to see how well it performs.

The Intel(R) Core(TM) 2 Quad CPU 2.83 GHz
desktop PC with 6GB RAM was used for all
simulations and tests.

8.1 Simulation results
8.1.1 Simulation setting
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Based on the random graph model G.n; p/ D FG jG,
we devised our own simulator to produce random
graphs, each of which contains n nodes and an edge
connecting any pair of nodes. Has a chance of pg of
being created. The related social influence, 0 pij 6 1,
for the graph G D.V; E/ 2 G.n; p/; ui; uj 2 V and.ui;
uj / 2 E is produced at random. It's important to note
that there are two types of social influence:
constructive and maladaptive. When one node is
chosen to be the active node, it influences its
neighbors for the better. Otherwise, it can have
nothing but a destructive effect on its surrounding
areas. One hundred examples are created for each
configuration. The outcomes are an average of these
100 separate events. The simulation results for many
cases are shown below.

8.1.2 Simulation results on random
graphs

Both MPINS and PIDS aim to reduce to a minimum
the size of the resulting subsets. Here, we verify the
MPINS, PIDS, and PIDS solution sizes. Optimum in
a wide variety of contexts and for nondeterministic
graphs. The influence threshold , the probability that
an edge may be created in the random graph model
G.n; p/, and the size of the network n are all variables
in this simulation. Since we use exhaustive searching
to locate the BEST MPINS solution, it is impossible
to test on truly massive networks. Therefore, we
begin by simulating smaller networks, ranging in size
from 10 to 20 nodes. Figure 4 displays the obtained
data. Figures 4a-c show the effects of n, p, and _ on
the solution sizes of MPINS, PIDS, and OPTIMAL.
All three methods provide solutions that grow in size
as n rises, as seen in Figure 4a. This is because a
larger network requires more effort to influence.
Furthermore, PIDS generates a larger sized solution
than MPINS does for a given network size. This is
because, in each iteration, PIDS prioritizes the node
with the greatest degree, but in MPINS,; it is the node
with the biggest f. / value that is added after finding
the most influential Maximal Independent Set (MIS)
in the network. Some neighbors may have strong
detrimental effects on the individuals in a social
network, so a high degree is not always indicative of
a strong ultimate influence. More nodes need to be
added to the subset before they can exert influence
over all the nodes in the entire network, but MPINS
avoids the node selection bias in some specific
regions by choosing a MIS first. The MPINS solution
comes very near in size to the OPTIMAL outcome.
Specifically, PIDS generates 3.75 times as many
nodes as the OPTIMAL solution, while MPINS
generates only 1.07 times as many. Results suggest
that in small-scale networks, the proposed greedy
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algorithm MPINS-GREEDY may yield a solution
that is extremely near to the OPTIMAL solution.

PIDS
MPINS

] oPTIMAL

®
—T

=i

mo®
— T

Size of the influe ntial node st
=

w
T

5
T

PIDS

v I P NS
] oPTinaL

o

w

Size of the influsntal node sat
5] = o

PIDS

(NP IS

OPTIMAL

5128 ot the influental node sat

a1 0z a3 04 as 08 a7 aa a3
[

Figure 4: The Relative Size of Solutions on Local
Area Networks. n =15, p = 0.5, and _ = 0.5 are the
default values.

Fig. 4b shows that there is no discernible pattern.
Because more edges in the network means that a
given node may have more negative or positive
neighbors, the solution sizes of all three algorithms
grow as p grows. Distinguishing the typical size
distribution of sets of chosen influential nodes in a
dense network is challenging. Since the goal of PIDS
is not to obtain the most influential and no-
regionally-biased nodes in the network, for a given p,
PIDS produces larger sized solutions. Once again,
MPINS can build a solution that is as compact as the
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optimum. While PIDS generates an average of 3:16
more nodes than the OPTIMAL solution, MPINS
generates an average of only 1:6 more nodes. When
is large, more nodes must be included in the initial
active node set in order to exert influence over all the
other nodes, as shown in Figure 4c. This causes all
the solutions to grow in size.

Since PIDS's greedy criterion prioritizes nodes with
the highest degree first, MPINS performs similarly to
OPTIMAL and better than PIDS. In general, MPINS
generates 1-3 times as many nodes as the OPTIMAL
solutions, while PIDS solutions are much smaller.
Compared to the OPTIMAL method, PIDS generates
an average of 3—7 more nodes. The same explanation
as previously applies. We also conduct a series of
simulations on medium-sized networks, varying the
network size from 100 to 1000. In Fig. 5, we can see
how n, p, and _ affect MPINS and PIDS. Larger
social networks need more dynamic influential nodes,
which are shown in Figure 5a's solution sizes for
MPINS and PIDS. In addition, the gap between
MPINS and PIDS sizes widens with increasing n. In
a small-scale network (i.e., n 500), the size of the
initial active node set is small (no more than 30 from
Fig. 5), allowing MPINS to find a positive influential
node set that is smaller than that of PIDS at a specific
n. As a result, it might be difficult to distinguish
between the two approaches. However, our proposed
MPINS significantly expands the initial active node
set compared to PIDS in a medium-sized network,
where n 1000. The same explanation applies to this
case as the one we gave before. MPINS generates a
positive influential node set that is 22.5% less in size
than PIDS on average. Figure 5b shows that when p
grows, both the PIDS and MPINS solution sizes
decrease. Increasing p suggests that more edges are
present in the

Network grows, it follows that the average number
of neighbors for each node also grows.

So, a single influential active node can affect the
behavior of many

E——T n
2 | e MPNS

] 5
Ewu—
= =
= |
3 a0 -
& -
E
= e .
2
L] -
@ 0
5 . = -
~ -
=0 O
= -
a 100 F00 300 400 500 500 700 S00 800 1000 1100

n

(a)
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Figure 5: Solutions' Typical Size in Very Large
Networks the default parameters are (n = 15), (p =
0.5), and (_=0.5).

Repeat PIDS for a given p. yields a bigger solution
size than MPINS. Small solution sizes make it hard
to tell which approach is superior. In sparse
networks, however, such as p D 0:1, MPINS is
demonstrably superior to PIDS. Because the degrees
of all nodes are small when p is small, the decreasing
trend of PIDS is very rapid when p is increased.
Therefore, PIDS may iterate until a solution is found
that guarantees a positive influence on every node in
the network with a threshold of at least . A positive
influencing node set of modest size may be
contributed to the solution after bigger degree nodes
are added when p is large, which may cause PIDS to
end sooner. Compared to MPINS, PIDS generates an
average of 31.52% more nodes. Similarly to what
was found for Fig. 4c, larger values of _ result in
larger PIDS and MPINS solution sizes (as seen in
Fig. 5¢). In addition, when _ grows, PIDS produces
more nodes than MPINS. When comparing PIDS
with MPINS, the former generates an average of
23.2% more nodes. The greedy searching in MPINS
begins on a hand-picked selection of highly important
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MIS nodes, while in PIDS, the set is initially empty.
In addition, PIDS's greedy search criteria, node
degree, may to locating some regionally biased nodes
in order to expand the solution overall. Our suggested
MPINS approach initially chooses a MIS, thus it
never faces the aforementioned conundrum. Exhibits
6-8

Size of the node set

100 200 300 400 500 00 Toa aga 900
Fig. 6 Size of the node set: The default settings are
p=0.5and _=0.5.
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Fig. 7 Size of the node set: (a) n=20 and _ = 0.5; (b)

n =500 and _=0.5.
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Comparison of network sizes in Fig. 8: (a) n =20
and p = 0.5; (b) n =500 and p = 0.5.

Changes in n, p, and . Based on these findings, more
MPINS-GREEDY iterations are likely not necessary.
Sprint to discover an answer to MPINS after deciding
on a powerful MIS. The suggested greedy method for
solving PIDS, on the other hand, requires much more
iterations than MPINS-GREEDY.

8.1.3 The findings of a simulation of a

very big network

The growth of social media's user base has been
meteoric. As a result, we do a number of simulations
on very extensive systems. From 10,000 nodes, the
network now supports 50,000. Figure 9 displays the
effects of n, p, and _ on MPINS and PIDS. Figure 9a
demonstrates that as n grows, so do the sizes of
MPINS and PIDS solutions. This growth arises
because bigger social networks need a greater
number of dynamic influential nodes. As n grows
larger, there becomes a larger disparity between
MPINS and PIDS. As can be shown in Fig. 9a, our
suggested MPINS significantly improves the size of
the first active node set compared with PIDS in a
large-scale network, where n D 50,000 is used as an
example. MPINS generates a positive influential
node set that is 42:1 smaller on average than PIDS.
The solution sizes of PIDS and MPINS grow as _
grows, as shown in Fig. 9b for the same reasons
discussed for Fig. 5. In addition, when _ grows, PIDS
produces more nodes than MPINS. There are 4182%
more nodes generated by PIDS than by MPINS on
average.

8.2 Experimental results on real data sets

8.2.1 Experimental setting
We also include trials conducted on various types of
real-world data. The primary data sets,
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Figure 9: Node set size for (a) _ = 0.02 and (b) p =
0.2 and (c) n = 50,000 and (p = 0.2).

The source of which, as stated in Table 1, is The
Stanford University Large Network Dataset
Collection (SNAP) is a repository for publicly
available network datasets. Linked system
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Table 1 Data set 1 in our experiment.
Duaset Numberofmdes  Nomberofedges  LWCCIN)  LWCCE  LSCCN) LSCCE)  Diameler
Al L I8 RN 1T WITELON TINT 09
AL S0MD 0T 3N0M0 01T0%9) 09809 18
Ay AT INGEM A0B6 3N6RM MOWO%N 3nsKe9) 2
M TRTHE BN WM NSIMO90) 30209 2
Note: N stands for nodes,  stnds for edges.

)
)
)

Summaries of statistics include the number of nodes
and edges, the size of the largest weakly connected
component (LWCC), and the number of nodes and
edges in the smallest strongly connected component.
The number of edges, and the diameter (i.e., the
longest and shortest route) of the LSCC. The
information in Table 1 was compiled using the
Amazon.com tool "Customers Who Bought This
Item Also Bought." Information gathered in the
Amazon from March to May of 2003 was used to
construct four distinct networks. If product i am
commonly bought alongside product j, then there will
be an edge between the two goods in the network
[43]. We also test our system on the following real-
world datasets, in addition to the Amazon product co-
purchasing datasets provided in Table 1:

One such dataset is Wiki Vote, which can be found in
Ref. [44] and provides information on past votes on
Wikipedia. Voting information for Wikipedia from
its beginning in 2001 to January 2008 is included in a
data collection with 7115 vertices and 103 689 edges.
There will be a connection between users i and j if i
voted for j in the administrative election. For (2)
Coauthor, see Ref. [45], which provides access to the
data collection containing the coauthors' information
as kept by ArnetMiner .The set we settled on has
exactly 53 442 vertices and exactly 127 968 edges. If
author i is connected to author j, then there will be
one edge between them.

Figure 10 displays the average degree of each data
set, which may be used to get insight into the data
features of the real-world datasets. Figure 11
provides a concise overview of the social impact
distribution between every pair of nodes in the
datasets. Figure 11a demonstrates that the majority of
the vertices are influenced socially during the
interval. Time stamps of 0:005; 0:05 in the Amazon
A1-A4 co-purchase datasets. Based on this finding,
we allowed to vary in the experiment data sets
including Amazon co-purchases from 0:005 to 0:02.
Most social impacts around the boundaries lie inside
the range, as shown in Figure 11b.Data sets from
Wiki Vote (0:02), Coauthor (0:10), and Twitter
(0:10). In the same way, we varied _ in the
experiments from 0:02 to 0:08 for these three
datasets.
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8.2.2 Experimental results

The effects of changing from 0:005 to 0:02 on
Amazon co purchase data set _ sizes, MPINS
solutions, and PIDS solutions in Fig. 12a for your
perusal. Because more influential nodes must be
chosen when the pre-set threshold is high, the size of
the PIDS and MINS solutions grows as _ increases,
as shown in Fig. 12a. MPINS generates more
compact sets of influential nodes than PIDS does for
a given _. MPINS's solution size is also somewhat
similar to that of MIS. Those findings line up with
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FIGURE 11: The distribution of possible outcomes
for the Wiki Vote, Coauthor, and Twitter datasets,
as well as the Amazon co-purchase dataset (a).

The outcomes of the simulation. Our recommended
analysis of data set A2 MPINS is a much superior
technique than PIDS. When compared to PIDS,
MPINS chooses nodes with 31% less influence on
average. The ratio of PIDS to MPINS solution size is
around 37:23.

Because MPINS prioritizes the node with the most
influence, rather than the node with the largest
degree, this outcome occurs. In addition, PIDS has a
faster rate of solution size expansion than MPINS. In
particular, the typical rates of increase for PIDS and
MPINS solution sizes are 62 and 38%, respectively.
Once again, the findings demonstrate that more
degree does not equal greater sway in a social
network. Changes in _ from 0:02 to 0:08 have similar
effects on the MIS size, MPINS solutions, and PIDS
solution on the WikiVote, Coauthor, and Twitter data
sets, as shown in Fig. 12b. Sizes of PIDS and MINS
solutions grow as _ grows, as seen in Fig. 12b.
MPINS generates a smaller number of influence
nodes than does

T T T T
=2 PIOS Be0.005 MAIS B=00.00 PINSG G=0.005 ]
PIDS w0 01 MIS G001 MPINS Be0.01
B ri0s 6e002  EEEE WIS 9002 MPINS Ge0.02

Sike of e infuensal node sead S8

ISSN: 0976-0172

Journal of Bioscience And Technology

www.jbstonline.com

2500 DS 8=0.04

s 8= 0.08 .
ID5 G= 0.08
15 B= 002

2000

MIS §= 004
| |EEmis 6= aoa
MIS 8= 0.08
MP NS 8= 002

1500

I 4= s 8= 0
[ e s 9= 008

1000

Siza of tha infuanial noda seed et

Coauthar

Data se
by

Datasets for (a) Amazon copurchases and (b)
WikiVotes, Coauthorship, and Twitter are combined
in Figure 12 to illustrate the overall number of
significant nodes in each. PIDS. The MPINS solution
is also around the same size as the MIS. When
applied to the Twitter dataset, MPINS picks 45—45%
less influential nodes than PIDS. The mean absolute
difference between PIDS and MPINS results is 36.37
percentage points. Further, PIDS's rate of solution
size expansion is higher than that of MPINS. In
instance, the average increase rate of the size of the
solution is 54:1% for PIDS and 43:6% for MPINS.
Figure 13 displays the percentage of the network's
nodes that play a significant role. Figure 13a shows
the results of _ for the Amazon co-purchase data sets
on the ratio of MIS, MPINS, and PIDS, while Figure
13b shows the results of _ for the WikiVote,
Coauthor, and Twitter data sets.

The consequences of the past don't repeat themselves.
Nonetheless, a single idea stands out:
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Figure 13: In (a) Amazon co-purchase data sets and
(b) WikiVote, Coauthor, and Twitter data sets, the
percentage of the total size of prominent node sets.
That compared to WikiVote, Coauthor, and Twitter
data sets, Amazon co-purchase data sets have a
significantly smaller number of nodes identified as
influential nodes. To be more precise, PIDS and
MPINS choose nodes with influence scores of 0.047
and 0.035, respectively, under the worst case scenario
(for the data set A1 with D = 0.02). Both PIDS and
MPINS select 11.2 percent of nodes as influential for
the Wiki Vote dataset with D = 0.08. Compared to
the WikiVote, Coauthor, and Twitter data sets, the
Amazon copurchase data sets seem to be more
conducive to the spread of social impacts. Users' past
Amazon purchases are used to make comparable
product recommendations, which speeds up the
influence spread.

Finally, we evaluate MPINS against PIDS and a
"Random" technique that selects a node at random to
serve as the influential node. Figure 14 displays the
effects of _ on the solution sizes of MPINS, PIDS,
and Random when _ varies from 0:02 to 0:08 for the
WikiVote, Coauthor, and Twitter datasets. Figure 14
illustrates how the sizes of Random, PIDS, and
MPINS solutions grow with n. In addition, MPINS
yields a less significant effect for a given .
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Figure 14: Comparison of MPINS, PIDS, and
Random in (a) WikiVote, (b) Coauthor, and (c)
Twitter.

cluster than PIDS does. This finding accords with
findings from past experiments and results from
simulations. For a given _, Random selects a node at
random without any selection criteria, whereas PIDS
and MPINS generate significantly narrower
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collections of influential nodes. In contrast to our
MPINS' greedy criteria, PIDS's selection method is
degree-based, while it is influence-based. Both PIDS
and MPINS seem like they ought to do better than
Random, at least intuitively. On average, MPINS
chooses 48.33% fewer important nodes than PIDS for
theWikiVote dataset (shown in Fig. 14a). When
compared to Random, MPINS chooses nodes with
61% fewer influence 69% of the time. Compared to
PIDS, MPINS picks, on average, 15-32% less
important nodes from the Coauthor data set (shown
in Fig. 14b). On average, MPINS chooses 13-77%
less influential nodes than Random. Compared to
PIDS, MPINS picks, on average, 23.121% less
important nodes from the Twitter data set (Fig. 14c¢).
When compared to Random, MPINS chooses nodes
with 66% fewer influence on average.

9 Conclusions

This research investigates the commercially-relevant
MPINS selection issue in social networks. By use of
simplification, we prove that MPINS according to the
independent cascade model is challenging for APX.
As a result, we propose a greedy algorithm,
MPINSGREEDY, to address the issue. We test our
proposed technique on seven distinct real-world
datasets and verify it through simulations on random
networks. Evidence from simulation and testing
suggests that MPINS-GREEDY can build satisfied
initial active node sets that are smaller than the most
recent related study, PIDS. Furthermore, MPINS-
GREEDY performs similarly to the optimal MPINS
solution for small-scale networks. In addition,
MPINSGREEDY significantly outperforms PIDS in
sparse networks, large-scale networks, and with a
high threshold.
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